Mastering Atari, Go, chess and shogi by planning with a learned model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm

The game of chess is the most widely-studied domain in the history of artificial intelligence. The strongest programs are based on a combination of sophisticated search techniques, domain-specific adaptations, and handcrafted evaluation functions that have been refined by human experts over several decades. In contrast, the AlphaGo Zero program recently achieved superhuman performance in the ga...

متن کامل

Chess, Shogi, Go, Natural Developments in Game Research

In game programming research there are four interesting and related domains: chess, xiang qi (Chinese chess), shogi (Japanese chess) and go. In this article we will compare chess with shogi, both comparing the rules and the computational aspects of both games. We will see that chess and shogi are very similar, but that there are some important di erences that complicate game programming for sho...

متن کامل

‏‎a comparative study of language learning strategies employmed by bilinguals and monolinguals with reference to attitudes and motivation‎‏

هدف از این تحقیق بررسی برخی عوامل ادراکی واحساسی یعنی استفاده از شیوه های یادگیری زبان ، انگیزه ها ونگرش نسبت به زبان انگلیسی در رابطه با زمینه زبانی زبان آموزان می باشد. هدف بررسی این نکته بود که آیا اختلافی چشمگیر میان زبان آموزان دو زبانه و تک زبانه در میزان استفاده از شیوه های یادگیری زبان ، انگیزه ها نگرش و سطح مهارت زبانی وجود دارد. همچنین سعی شد تا بهترین و موثرترین عوامل پیش بینی کننده ...

15 صفحه اول

Mastering the game of Go from scratch

In this report we pursue a transfer-learning inspired approach to learning to play the game of Go through pure self-play reinforcement learning. We train a policy network on a 5 ⇥ 5 Go board, and evaluate a mechanism for transferring this knowledge to a larger board size. Although our model did learn a few interesting strategies on the 5 ⇥ 5 board, it never achieved human level, and the transfe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature

سال: 2020

ISSN: 0028-0836,1476-4687

DOI: 10.1038/s41586-020-03051-4